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 In this problem we deals with the study of propagation of surface waves in 
an elastic solid layer over laying a visco-elastic fluid saturated porous solid half space. 
The main interest in this problem is to formulate the boundary value problem for 
wave equation in P and S systems. Dispersion equation is derived and special case is 
considered. For numerical calculations, we considered the visco-elastic half space with 
water saturated sand stone of 100 percent saturation.

Visco-elastic, Fluid saturated, Wave equation, Homogeneous, Isotropic, 
Scalar Potential.  

The exact natures of the layers beneath 
the earth surface are not known. One 
has, therefore, to consider various 
appropriate models for the purpose of the 
theoretical investigations. Biot (1952, 
1956a) formulated the constitutive 
equations and equation of motions for 
liquid saturated porous material. Porous 
materials exist very often on and below 
the surface of the earth in the form of 
sandstone, limestone and permeable 
sediment rocks. Biot (1962a) studied the 
propagation of harmonic seismic waves in 
a porous solid and found two dilatational 
waves along with a shear wave produced 
in such material. Tolstoy (1954) discussed 
the propagation of elastic waves in a 
system consisting of a liquid layer of 
finite depth overlying an isotropic half-
space. Gogna (1979) considered the 
surface wave propagation in a 
homogeneous anisotropic layer over a 
homogeneous isotropic elastic half space 
and under a uniform layer of liquid. 
Among various contributions on the 
subject of wave propagation in fluid 
saturated media, the work by Stoll (1974) 
is particularly noteworthy. Stoll extended 
Biot’s constitutive relations to include 

mechanisms of energy loss in the 
skeleton frame. This allowed for a more 
consistent treatment of the overall 
attenuation of the combined fluid- solid 
medium.  
Further, Deresiewicz (1962) and Jones 
(1961) has considered Rayleigh waves in 
fully saturated uniform half space. 
Murphy (1982) discussed the effect of 
partial water saturation in Massilon-sand 
stone and viscous pore glass. Also 
Philippacopoulos (1987) investigated the 
Rayleigh wave propagation in fully 
saturated uniform half space and in a 
partially saturated half space. Porous 
media theories play an important role in 
many branches of engineering including 
materials science, petroleum industry, 
chemical engineering, biomechanics, soil 
mechanics and other such fields of 
engineering. Most of the modern 
engineering structures are generally 
made up of multiphase porous continuum 
and the classical theory, which represents 
a fluid saturated porous medium as a 
single phase material, is inadequate to 
study the mechanical behaviors of such 
materials especially when the pores are 
filled with liquid. In this case the solid 
and liquid phases have different motions. 
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Due to these different motions, the 
different material properties and the 
complicated geometry of pore-structure, 
the mechanical behavior of a fluid 
saturated porous medium becomes more 
difficult. So, researchers from time to 
time have tried to overcome this difficulty 
and a considerable work is available in 
the literature cf. De Boer (2000) etc. De 
Boer and Ehlers (1988) have studied the 
formulation of porous media. There are 
reasonable grounds to assume that the 
constituents of many fluid saturated 
porous media are incompressible. For 
example, taking the composition of soil, 
solid constituents are incompressible and 
liquid constituents which are generally 
water or oils are also incompressible.  
Recently Kumar and Hundal (2003, 2004) 
have studied the problems of wave 
propagation in a fluid- saturated 
incompressible porous media. Many 
researchers have discussed the surface 
wave propagation in elastic media and a 
comprehensive review is available in the 
standard text, e.g., Ewing et al (1957). 
The surface waves discussed in these 
texts are within the scope of single phase 
models, but the presence of fluid in the 
pores of an elastic pores solid might have 
affected the motion of solid particles. 
Sharma et. al. (1990) has discussed the 
surface wave propagation in a 
transversely isotropic elastic layer 
overlaying a liquid saturated porous solid 
half-space and lying under a uniform 
layer of liquid as far as the multi-phase 
systems are concerned; there is 
considerable work concerning the surface 
wave propagation in fluid saturated 
porous media at the present time, and a 
brief review is available in Kumar and 
Miglani (1996), Kumar and Deswal 
(1996), Liu and Liu (2004), and Edelman 
(2004). But all these are based on the 
classical Biot’s model where the 

constituents of a fluid saturated porous 
medium are assumed to be compressible. 
Kumar and Hundal (2003) investigated 
the wave propagation in a fluid saturated 
incompressible porous medium. 
  Kumar and Hundal (2002) have study of 
spherical and cylindrical wave 
propagation in a non-homogeneous fluid-
saturated incompressible porous medium 
by method of characteristics. Pradhan et. 
al. (2008) considered a system of waves in 
liquid porous solid bounded by elastic 
half-space and liquid layer.Kumar et.al. 
studied shear wave propagation in 
multilayered medium including an 
irregular fluid saturated porous stratum 
with rigid boundary. Shekher and Parvez 
(2016) have discovered propagation of 
torsional surface waves in an 
inhomogeneous anisotropic fluid 
saturated porous layered half space under 
initial stress with varying properties. 
Alam et. al (2017) have studied dispersion 
and attenuation of the torsional wave in a 
viscoelastic layer bonded between a layer 
and a half space of dry sandy media. 
Kumhar et. al.(2020) have discovered 
modeling of love waves in fluid saturated 
porous visco-elastic medium resting over 
an Exponentially graded inhomogeneous 
half space influenced by gravity. 

The present problem deals with 
the study of propagation of surface waves 
in an elastic solid layer over lying a visco-
elastic fluid saturated porous solid half 
space. The main interest in this problem 
is to formulate the boundary value 
problem for wave equation in P and S 
systems. Dispersion equation is derived 
and special case is considered. For 
numerical calculations, we considered the 
visco-elastic half space with water 
saturated sand stone of 100 percent 
saturation.  
Formulation of the problem: The problem 
under consideration is shown in Fig.1 



International Journal of Academic Research 
ISSN: 2348-7666; Vol.7, Issue-8(1), August, 2020 
Impact Factor: 6.023; Email: drtvramana@yahoo.co.in
 

www.ijar.org.in                                                                                                                       3 
 

which basically represents a two layer 
medium. Rayleigh waves for this system 
have been studied extensively for cases in 
which both the layer and supporting half-
space are either elastic or visco-elastic. 
The additional fact included in the 
present study is that the ground water 

table is located at the depth H which 
defines the layer/half space interface 
consequently, while the dry layer is solid 
medium and the half space is treated as a 
visco-elastic fluid saturated poro-elastic 
medium.

                                               H                     solid medium

                                                                                                       x

                                                                                      

 

 

                                                                  +z                                                              

 visco-elastic fluid saturated  porous half space

 

Assuming that the layer is homogeneous, isotropic and linearly elastic, the field 
equations of the layer in plane strain are [Ewing et. al. (1957); Achenbach, (1967)] 

2
2

l u l l l 2x
ue

x t
x                                            (1) 

 2
2 z

l u l l l 2z
ue

z t

                                               (2) 

 
In which l, l=Lame’s constants, e=dilatation, l=mass density, ux, uz=displacements 
in x and z directions, respectively. 
 
By introduction of the scalar potentials, 1, 1

1 1 1 1
x zu = , u

x z z x                                                          
(3)

 

 reduces to the known wave equation 
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P system                           S system 

2
2 1

1 2 2
l

1
;                

2
2 1

1 2 2
l

1

         
(4) 

In which l, l=velocities of body dilatational and shear waves in the layer 
respectively, i.e. 

     

2 2l l l
l l

l l                                                                                         
(5) 

The solution of (4) is 

1 1 1 [ exp(- ) exp( )]exp[ ( - )]A pz B pz i t kx                                                    (6) 

1 2 2 [ exp(- ) exp( )]exp[ ( - )]A pz B pz i t kx                                                   (7)  

where, k= /c, and 2 2 1/2 2 2 1/2
0 l 0 lp =p/k=(1-c / ) , q =q/k=(1-c / )                              (8)                                            

Consequently, by virtue of (6) and (7), the displacements and stresses in the layer are 
obtained as follows.

2 2
1 1 2 2

2

      exp(- ) exp( ) 2 exp(- )- exp( )

x z
zz l l l

l

u u
x z

q k A pz B pz i kq A qz B qz
    

(9a)

2 2
1 1 2 2    2 exp(- ) - exp( ) - exp(- ) exp( )

x z
xz l

l

u u
z x

ikp A pz B pz q k A qz B qz
        

(9b)

1 1 2 2 - [ exp(- ) exp( )] [ exp(- ) - exp( )]xu ik A pz B pz q A qz B qz            (9c)                                   

 1 1 2 2- [ exp(- ) - exp( )]- [ exp(- ) exp( )]zu p A pz B pz ik A qz B qz                 (9d)                                 

 In which the factor exp{ ( - )}i t kx is omitted for convenience.
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Following Biot (1956), the governing differential equations for the visco-elastic half 
space shown in Fig.1, in terms of displacements are 
 

2
* 2 * * * * * *

2  b x f x
eu T M T M u
x x t    (10a)                

2
* 2 * * * * * *

2 b z f z
eT M T M u
z z t       (10b) 

2
* * *

2
x

f x xT M e M u m
x t t

                                      

(10c) 

2
* * *

2 z
f z xT M e M u m

z t t

                             

(10d)

 

 
These materials are related to visco-elastic layer where =jacketed incompressibility, 

= coefficient of fluid content, =unjacketed compressibility, =mass density of 
bulk material,  = mass density of fluid, m = density of fluid, =poro fluid viscosity, 
= permeability, *= coefficient of the fluid constant, =dilatation of the fluid relative 

to the solid and *= visco-elastic modulii, where * * * *1-   ,T k * * *P = ( +(2/3) ) , 
* * * *2 * *M =1/( + - ( +(2/3) ) , P* is saturated or closed bulk modulus, M* is the 

pressure to be exerted on the fluid to increase the fluid content of a unit volume. We 
proceed next to reduce (10a), (10b), (10c), (10d) to wave equations. For this purpose, 

consider the potentials 2 2 ( , )and 3 3( , ) defined as       

These materials are related to visco-elastic layer where =jacketed incompressibility, 
= coefficient of fluid content, =unjacketed compressibility, =mass density of 

bulk material,  = mass density of fluid, m = density of fluid, =poro fluid viscosity, 
= permeability, *= coefficient of the fluid constant, =dilatation of the fluid relative 

to the solid and *= visco-elastic modulii, where * * * *1-   ,T k * * *P = ( +(2/3) ) , 
* * * *2 * *M =1/( + - ( +(2/3) ) , P* is saturated or closed bulk modulus, M* is the 

pressure to be exerted on the fluid to increase the fluid content of a unit volume. We 
proceed next to reduce (10a), (10b), (10c), (10d) to wave equations. For this purpose, 

consider the potentials 2 2 ( , )and 3 3( , ) defined as       

                    

2 2 2 2

3 32 2

 , ,

 , ,   

x x

z z

u
x z x z

u
z x z x

      (11)
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Substitution of (11) in (10a), (10b), (10c), (10d).

* * * * 2 * * 2 * 2
2 3 2

2 22 2
3 32 2

2 2 2 2

2   

                                   b f b f

T M T M
x z

x t t x t t

which will be satisfied if 

22
* * * * 2 * * 2 32

2 3 2 22  b fT M T M
t t

       

(12a) 

2
* 2 32

2 2 2b ft t                                                                        
(12b) 

Similarly, it is easy to show that substitution of (11) into (10c) yields the following 
equations.

22
* * 2 * 2 3 32

2 3 2 2  fT M M m
t t t

                         

(12c) 

22
3 32

2 2 0f m
t t t                                                                     

(12d) 

(12a), (12b), (12c), (12d) are the wave equations for the compressional and distortional 
propagations in the visco-elastic saturated half space. In the matrix form

2
* 2

2 0         (  )pG c k P system
t t

                                             
(13a) 

2
* 2

2 0          (  )sG c k S s y s t e m
t t                                              

(13b) 

 In which T T
2 3 2 3 ={  , };   ={  , };                                                    (13c)                                                                       

where ,   * * * * * * *
*

* * *

0 0 2   0
,  ,  ,  

0 0 0
b f

p s
f

T M T M
G c k k

m T M M

  (13d)

By analogy with the mass, damping and stiffness matrices in structural mechanics, we 
note from (13a), (13b), (13c), (13d) that the dilatation is associated with both inertia 
and elastic coupling (coupling = interaction between solid-fluid phases) while the
shear waves have only inertial coupling. Equations (13a), (13b), (13c), (13d) represents 
second-order (symmetric) systems which can be solved by the Foss method. The latter 
method has the advantage that yields orthogonal complex modes, thus allowing for a
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diagonalization of (13a), (13b), (13c), (13d). This will be particularly effective in 
solutions associated with the propagation due to transient pulses. 
Next, we are focusing our interest in plane waves of the form
  exp  [ ( - )];    exp[ ( - )]z zf i t kx g i t kx                                                          

(14)
Substitution of (2.2.14) into (2.2.13a), (2.2.13b), (2.2.13c), (2.2.13d) results in the 
following two systems of coupled second order ordinary equations. 

2 2

2 20,  0p p s s
d dk A f k A g
dz dz

                                                                                 
(15)

* *
* *

* *
2

*
*

*

w h e r e ,

20 0
-

0
b f

p
f

T T
M M

A i k
m T

M
M

                            

(16a)

                                                                                         

*
2 2

0 0
0- -

0 0 0
b f

s
f

A i k
m

                                                         

 

By choosing solutions of the form 

* *
 exp( );   exp( )z zf F z g G z                                                  (17))                                                                   

we arrive at two eigen value problems associated with P and S systems, respectively.           

                       0,   0p sE F E G                                                              (18a) 

                       

* * * * 2 2 * * 2 2

* * 2 2 * 2 2

- 2  -  

-  -

b f

p

f

T M T M
E

T M M m i
          

(18b)

                      

* 2 2

2 2

-

-

f

s
f

E
m i

                                                     

(18c) 

                        
2 22 2 * 2 2 *- , -k k                                                   (19)     
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The vanishing of the determinants in (18a), (18b), (18c) yields the complex roots / , 
/ . Substituting the latter into (19), we finally obtain the following expression. 

2 2

1/ 2 1/2
* *2 2
1 2

1 2* *
1 2

1 , 1-c cp p
k k

                  
(20a)                           

2

1/ 2
* 2

1 *
1

1- cq
k

                                                           
(20b) 

2 2 2
* * * * *

* * *
1 2 1

1 2 3

2 2, ,
                      

(20c) 

1, 2, 3 represent mass densities of solid, fluid and average respectively which are 
given by the relations 

* *
2

1,2 0 0 *

2 - -f b
im m

M
                     

(21a)      

* * * *
*

0 1 *

2  
2 - 2 -b f

T M im
M    

(21b) 

2

3
2

- f
b

im
m

                                         

(21c)

According to (20) and (21), we have expressed the velocities *
1, 2

* and 1 in a 
convenient form using the modulii of the solid phase and by introducing the frequency-
dependent equivalent mass densities 1, 2 and 3. Finally from (18) it can be seen that 
the wave amplitudes satisfy the relations. 

* *
3 1,2 2 3 3 2 ;   ;F F G G                                                (22)                                                                               

In which

2 2

2

* *
1,2*

1,2

*
*
1, 2

-
-

-

bb

f

f

MT

                             (23a)
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2 2
1*

3 2
1

1- -
- s s

f

            (23b)

Hence from (14) and (22) we can now put the wave potential in the form 

 

* *
2 3 1 3 2

* * * *
3 1 3 1 2 3 2

exp( ) exp( ) exp -

exp( ) exp( ) exp -

A z B z i t kx

A z B z i t kx
             (24a)

 

 

*
2 4

* *
3 3 4

exp -

exp -

A z i t kx

A z i t kx
                                 

                 

(24b) 

In general, , and are complex. We require these real parts to insure 
attenuation in z direction. 
 

          2

2

* 2 * * * *
1 1 3 1

*

* 2 * * * *
2 2 3 2

- 1- exp
-

- 1- exp
f

k k A z
M

k k B z
             

(25a)

 

Bulk stress: Tangential – is given by            
* * * * * * *2 *2 *

1 3 1 2 3 2 4/ -2 exp( ) exp( ) - exp( )b
xz ik A z B z k A z

           (25b)                                                                                                     

Bulk stress: Normal is

 
* * * * *

1 3 1 2 3 2 4/ exp( ) exp( ) - 2 exp( )b
zz g A z g B z i k A z        (25c) 

Plane displacement is
* * * * *

3 1 3 2 4exp exp - expxu ik A z B z A z

                     

(25d)  

* * * * * *
1 3 1 2 3 2 4exp exp - expzu A z B z ik A z                          (25e)

Relative fluid displacements are

 
* * * * * * *

1 3 1 2 3 1 3 4- exp exp - expx ik A z B z A z

       

(25f)

      

      

* * * * * * * * *
1 1 3 1 2 2 2 3 4exp exp - expz A z z ik A z

             

(25g)

     
2

2 2 2*
* 21 1
1 12 * 2 2*

1 - -1 2
1-

s b b s

s s s s

gs p
k

     

(26a)
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2

2 2 2*
* 21 2
2 22 * 2 2*

1 - -1 2
1-

s b b s

s s s s

gs p
k

           

(26b)

 

 

* * * * * * *
2 2 22 2  ,  ,  

1- 1-s s b
s s b

T M

  Boundary Conditions: 

We assume that (i) The surface is traction free; (ii) At the interface there is continuity 

of stress and displacements while the fluid density f is assumed to be zero. 

Hence we have 
At z=0,   

                            zz 1( ) =0                                                      (27)
                                                                                                    

                             xz 1( ) =0                                                     (28)                                                                       
At z=H,    
          

             1 1( ) ( )b
zz zz                                             (29)                                                                                       

                           1
b

xz xz                                                (30)                  

                           1 2( ) ( )x xu u                                                (31)                                                                          

                           1 2( ) ( )z zu u                                               (32)                                            

                            
 0f                                                     (33)                                                                        

 Substituting (9) and (25) into (29) through (33) and after eliminating B3 by virtue of 
(32), we obtain six homogeneous equation. 
         

1 1 2 2* *1 2 - 0q qA B i A B
P P                              (34a)

   

2

1 1 2 2* *
2 - - 1 0ip qA B A B
P P

                                                                                  
(34b) 
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2

1 1 2 22 **

* * *
3* *

1 2 4 *2 *

21 exp - exp( ) exp - - exp( )

exp 2- exp
L

q iqA pH B pH A qH B qH
PP

A H ig g Au H
P P

  
(34c)  

   

2

2

1 1 2 2* *2

* *
* * * *

4 2 3 1 3* *2

2 exp(- ) - exp(- ) - 1 exp(- ) - exp( )

2- exp 1 exp
L

ip qA pH B pH A qH B qH
P P

i A H A H
P P

       
(34d)                                                 
                                                                                                                                        

*
1 1 2 2

* * * * *
4 3 1 4

- exp(- ) exp( ) exp(- ) - exp( )

         - 1 exp( ) exp( )

iP A pH B pH q A qH B qH

iP A H A H
                 

(34e)
 

*
1 1 2 2

* * * * * *
1 2 4 3 1 4

- exp(- ) - exp( ) - exp(- ) exp( )

                      exp( ) - exp( )

P A pH B pH ik A qH B qH

A H iP A H
                                  

(34f)
* * 2

1 1*
4 * * 2

2 2

-1
where      -

-1

p

p
                                                             

Now for non-trivial solution to exist, we have

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

0

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

 
where,
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11 12 13 14 15 16 21 22* * * * * *
2 2 2 21,  1,  ,  ,  0,  ,  - ,q q iq iq ip ipa a a a a a a a

P P P P P P
 

2 2 2

2 3 2 4 2 5 2 6 3 1* 2 * 2 * 2

2

3 2 3 3 3 4* 2 * *

1 ,  1 , 0 ,  1 e x p ,

2 21 e x p ,  e x p ,  e x p ,

q q qa a a a a p H
P P P

q iq iqa p H a q H a q H
P P P  

* 2 * *

35 36 41 42*2 *2 * *

2 2 21 ,  , exp , exp ,
L L

q i ip ipa a a pH a pH
P P P P

2 2 *
* *

4 3 4 4 4 5 1 4 2* 2 * 2 *

* * 2
* *

4 6 5 1 5 2 5 3* 2

21 e x p , 1 e x p ,   ,

1 , e x p , e x p , e x p ,

L

L

q q ia q H a q H a
P P P

a a P p H a i P p H a q p H
P

* * * *
54 55 4 56 61

* * * * * *
62 63 64 65 1 4 2 66

 exp ,  1 ,  , exp ,  

exp ,  exp , exp , ,  

a q pH a iP a i P a P pH

a P pH a iP qH a iP qH a a iP

Some numerical results are presented to illustrate applications of the theory. Some 
graphs have been drown with the help of Mathematica and MATLAB. The following 
materials are used, for solving the numerical calculations. Porosity=0.23, Mass density 
of fluid( f)=1gm/cm3, Mass density of gains( s)=2.66gm/cm3, Amplitude for visco-
elastic medium( *)=0.738x10-11(dyne/cm2)-1, *=0.9x1011(dyne/cm2)1, 1

*=0.922x1011, 
1

*=0.3032x1011, k*= *+(2/3), *=9.1787x1010, M*=1/( *+ *- *2k*)=8.7867x1010, =10-

7cm2, *=(1- *k*)=0.3226, b=6.1x102gm/cm3, c/k=1.2x105, L=1.56x1012dyne/cm2, 
1

*=7.6x1012dyne/cm2, 2
*=8.7x1012dyne/cm2, 1

*=0.23cm, 2
* =0.53cm, 

3
*=1.13cm, 1=0.25gm/cm3 , 2=2.0gm/cm3,  3=2.5gm/cm3, k=0.0292.The data are 

taken from Murphy III (1982) which are already experimentally tested data and for 
this the results are verified with these data.

After solving the determinant we get,

 

                                        

2

1

0.5 1 c A B

k
C            

where,

  
24 29 10 24 201.27926 10 2.15545 10 1.55 10 ,A i e e
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Fig. 2.: Variation of phase velocity against wave numbers, when H=3.50. 
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Fig. 3: Variation of phase velocity against the wave numbers, when H=0. 
   
 
As compared by Murphy III (1982) and 
Zinsmeister (1988) it is reported that 
there is a 2% error with theoretical 
results and thus model considered is 
compatible. The Fig. 2 shows that when 
the wave number increases the phase 
velocity decreases for a certain value of H 
and for both isotropic and visco-elastic 
solid. Dispersion attains very quick.  Fig. 
3 shows that unit of variation i.e. phase 
velocity decreases as wave number 
increases for H=0 i.e. when layered 
media is reduced to visco-elastic porous 
elastic half space and dispersion attains 
at a later stage.
 

We have studied the propagation of 
surface waves in an elastic solid layer 
overlying a visco-elastic fluid saturated 
porous solid half space taking reference 
of a suitable example of a model. It is 
found that the effect of porosity and 
Massilon type sand stone is of 
considerable importance in the 
propagation of surface waves. Basic 
formulations and solutions related to this 
type of model are based on Biot’s theory. 
This theory whose experimental 
confirmation identified a number of 
mechanisms related to the presence of 
visco-elastic fluids and permeability of 
the medium. It is shown here that these 
mechanisms occur to a significant extent 
in the case of high mobilities and 
frequencies. In fact the complexity of the 
porous medium is such that it is totally 
unrealistic to try to construct a general 
model for porous media. Thus the 
problem considered is an attempt to 
tackle a model (simple) whose various 
parameters are experimentally verified 
with theoretical results. 
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